Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Pharmaceuticals (Basel) ; 15(8)2022 Jul 27.
Article in English | MEDLINE | ID: covidwho-1957412

ABSTRACT

Despite tremendous advancements in technologies and resources, drug discovery still remains a tedious and expensive process. Though most cells are cultured using 2D monolayer cultures, due to lack of specificity, biochemical incompatibility, and cell-to-cell/matrix communications, they often lag behind in the race of modern drug discovery. There exists compelling evidence that 3D cell culture models are quite promising and advantageous in mimicking in vivo conditions. It is anticipated that these 3D cell culture methods will bridge the translation of data from 2D cell culture to animal models. Although 3D technologies have been adopted widely these days, they still have certain challenges associated with them, such as the maintenance of a micro-tissue environment similar to in vivo models and a lack of reproducibility. However, newer 3D cell culture models are able to bypass these issues to a maximum extent. This review summarizes the basic principles of 3D cell culture approaches and emphasizes different 3D techniques such as hydrogels, spheroids, microfluidic devices, organoids, and 3D bioprinting methods. Besides the progress made so far in 3D cell culture systems, the article emphasizes the various challenges associated with these models and their potential role in drug repositioning, including perspectives from the COVID-19 pandemic.

2.
Front Mol Biosci ; 7: 616575, 2020.
Article in English | MEDLINE | ID: covidwho-1016070

ABSTRACT

Viral diseases are considered as a global burden. The eradication of viral diseases is always a challenging task in medical research due to the high infectivity and mutation capability of the virus. The ongoing COVID-19 pandemic is still not under control even after several months of the first reported case and global spread. Neither a specific drug nor a vaccine is available for public use yet. In the pursuit of a promising strategy, carbon dots could be considered as potential nanostructure against this viral pandemic. This review explores the possibility of carbon nano-dots to combat COVID-19 based on some reported studies. Carbon dots are photoluminescent carbon nanoparticles, smaller than 10 nm in dimension with a very attractive photostable and biocompatible properties which can be surfaced modified or functionalized. These photoluminescent tiny particles have captured much attention owing to their functionalization property and biocompatibility. In response to this pandemic outbreak, this review attempts to summarize the potential use of carbon dots in antiviral therapy with particular emphasis on their probable role in the battlefront against COVID-19 including their possible biosensing applications.

3.
Front Mol Biosci ; 7: 606779, 2020.
Article in English | MEDLINE | ID: covidwho-1016069

ABSTRACT

COVID-19 has resulted in a pandemic after its first appearance in a pneumonia patient in China in early December 2019. As per WHO, this global outbreak of novel COVID-19 has resulted in 28,329,790 laboratory-confirmed cases and 911,877 deaths which have been reported from 210 countries as on 12th Sep 2020. The major symptoms at the beginning of COVID-19 are fever (98%), tussis (76%), sore throat (17%), rhinorrhea (2%), chest pain (2%), and myalgia or fatigue (44%). Furthermore, acute respiratory distress syndrome (61.1%), cardiac dysrhythmia (44.4%), shock (30.6%), hemoptysis (5%), stroke (5%), acute cardiac injury (12%), acute kidney injury (36.6%), dermatological symptoms with maculopapular exanthema (36.1%), and death can occur in severe cases. Even though human coronavirus (CoV) is mainly responsible for the infections of the respiratory tract, some studies have shown CoV (in case of Severe Acute Respiratory Syndrome, SARS and Middle East Respiratory Syndrome, MERS) to possess potential to spread to extra-pulmonary organs including the nervous system as well as gastrointestinal tract (GIT). Patients infected with COVID-19 have also shown symptoms associated with neurological and enteric infection like disorders related to smell/taste, loss of appetite, nausea, emesis, diarrhea, and pain in the abdomen. In the present review, we attempt to evaluate the understanding of basic mechanisms involved in clinical manifestations of COVID-19, mainly focusing on interaction of COVID-19 with gut-brain axis. This review combines both biological characteristics of the virus and its clinical manifestations in order to comprehend an insight into the fundamental potential mechanisms of COVID-19 virus infection, and thus endorse in the advancement of prophylactic and treatment strategies.

4.
Front Mol Biosci ; 7: 606393, 2020.
Article in English | MEDLINE | ID: covidwho-962413

ABSTRACT

The coronavirus disease-19 (COVID-19) is caused due to the infection by a unique single stranded enveloped RNA virus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The COVID-19 has claimed many lives around the globe, and a promising solution to end this pandemic is still awaited. Till date neither an exact antiviral drug nor a vaccine is available in the market for public use to cure or control this pandemic. Repurposed drugs and supportive measures are the only available treatment options. This systematic review focuses on different treatment strategies based on various clinical studies. The review discusses all the current treatment plans and probable future strategies obtained as a result of a systematic search in PubMed and Science Direct database. All the possible options for the treatment as well as prophylaxis of COVID-19 are discussed. Apart from this, the article provides details on the clinical trials related to COVID-19, which are registered under ClinicalTrials.gov. Potential of drugs based on the previous researches on SARS-CoV, MERS-CoV, Ebola, influenza, etc. which fall under the same category of coronavirus are also emphasized. Information on cell-based and immunology-based approaches is also provided. In addition, miscellaneous therapeutic approaches and adjunctive therapies are discussed. The drug repurposing options, as evidenced from various in vitro and in silico models, are also covered including the possible future solutions to this pandemic.

5.
Med Hypotheses ; 143: 110081, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-634173

ABSTRACT

Hand hygiene by washing with soap and water is recommended for the prevention of COVID-19 spread. Soaps and detergents are explained to act by damaging viral spike glycoproteins (peplomers) or by washing out the virus through entrapment in the micelles. Technically, soaps come under a functional category of molecules known as surfactants. Surfactants are widely used in pharmaceutical formulations as excipients. We wonder why surfactants are still not tried for prophylaxis or therapy against COVID-19? That too when many of them have proven antiviral properties. Moreover, lung surfactants have already shown benefits in respiratory viral infections. Therefore, we postulate that surfactant-based prophylaxis and therapy would be promising. We believe that our hypothesis would stimulate debate or new research exploring the possibility of surfactant-based prophylaxis and therapy against COVID-19. The success of a surfactant-based technique would save the world from any such pandemic in the future too.


Subject(s)
Betacoronavirus , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/drug therapy , Pneumonia, Viral/prevention & control , Surface-Active Agents/pharmacology , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , COVID-19 , Coronavirus Infections/transmission , Humans , Micelles , Models, Biological , Mouthwashes/administration & dosage , Mouthwashes/pharmacology , Pneumonia, Viral/transmission , SARS-CoV-2 , Surface-Active Agents/administration & dosage , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL